A method of moments estimator of tail dependence

نویسندگان

  • JOHN H.J. EINMAHL
  • JOHAN SEGERS
چکیده

In the world of multivariate extremes, estimation of the dependence structure still presents a challenge and an interesting problem. A procedure for the bivariate case is presented that opens the road to a similar way of handling the problem in a truly multivariate setting. We consider a semi-parametric model in which the stable tail dependence function is parametrically modeled. Given a random sample from a bivariate distribution function, the problem is to estimate the unknown parameter. A method of moments estimator is proposed where a certain integral of a nonparametric, rank-based estimator of the stable tail dependence function is matched with the corresponding parametric version. Under very weak conditions, the estimator is shown to be consistent and asymptotically normal. Moreover, a comparison between the parametric and nonparametric estimators leads to a goodness-of-fit test for the semiparametric model. The performance of the estimator is illustrated for a discrete spectral measure that arises in a factortype model and for which likelihood-based methods break down. A second example is that of a family of stable tail dependence functions of certain meta-elliptical distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated Method of Moments Estimation for Copula-Based Multivariate Models

This paper considers the estimation of the parameters of a copula via a simulated method of moments type approach. This approach is attractive when the likelihood of the copula model is not known in closed form, or when the researcher has a set of dependence measures or other functionals of the copula that are of particular interest. The proposed approach naturally also nests method of moments ...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Semi-Parametric Models for the Multivariate Tail Dependence Function - the Asymptotically Dependent Case

In general, the risk of joint extreme outcomes in financial markets can be expressed as a function of the tail dependence function of a high-dimensional vector after standardizing marginals. Hence it is of importance to model and estimate tail dependence functions. Even for moderate dimension, nonparametrically estimating a tail dependence function is very inefficient and fitting a parametric m...

متن کامل

Generalized additive models for conditional dependence structures

We develop a generalized additive modeling framework for taking into account the effect of predictors on the dependence structure between two variables. We consider dependence or concordance measures that are solely functions of the copula, because they contain no marginal information: rank correlation coefficients or tail-dependence coefficients represent natural choices. We propose a maximum ...

متن کامل

Higher moments portfolio Optimization with unequal weights based on Generalized Capital Asset pricing model with independent and identically asymmetric Power Distribution

The main criterion in investment decisions is to maximize the investors utility. Traditional capital asset pricing models cannot be used when asset returns do not follow a normal distribution. For this reason, we use capital asset pricing model with independent and identically asymmetric power distributed (CAPM-IIAPD) and capital asset pricing model with asymmetric independent and identically a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008